2023年四川成人高考高起点《理数》重点知识复习(3)
2023年四川成人高考高起点《理数》重点知识复习(3)
●案例探究
[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.
命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.
知识依托:主要依据函数的性质去解决问题.
错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.
技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.
解:由 且x≠0,故0
又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2
∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2- 知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.
本文标签:四川成考 四川成考理数 2023年四川成人高考高起点《理数》重点知识复习(3)
转载请注明:文章转载自(http://www.crgk.sc.cn/)
《四川成人高考网》免责声明:
1、由于各方面情况的调整与变化,本网提供的考试信息仅供参考,考试信息以省考试院及院校官方发布的信息为准。
2、本网信息来源为其他媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com。